Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Influenza Other Respir Viruses ; 16(5): 837-841, 2022 09.
Article in English | MEDLINE | ID: covidwho-1819905

ABSTRACT

The impact of strengthening preventive measures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the prevalence of respiratory viruses in children was examined. After the SARS-CoV-2 pandemic, the rate of multiple virus detection among hospitalized children decreased. Immediately after the SARS-CoV-2 pandemic, respiratory syncytial and parainfluenza viruses were rarely detected and subsequently reemerged. Human metapneumovirus and influenza virus were not consistently detected. Non-enveloped viruses (bocavirus, rhinovirus, and adenovirus) were detected to some extent even after the pandemic. Epidemic-suppressed infectious diseases may reemerge as susceptibility accumulates in the population and should continue to be monitored.


Subject(s)
COVID-19 , Respiratory Tract Infections , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Hospitalized , Humans , Infant , Pandemics/prevention & control , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Rhinovirus , SARS-CoV-2
2.
J Infect Chemother ; 28(7): 859-865, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1739954

ABSTRACT

INTRODUCTION: Seasonal human coronavirus (HCoV)-229E, -NL63, -OC43, and -HKU1 are seasonal coronaviruses that cause colds in humans. However, the clinical characteristics of pediatric inpatients infected with HCoVs are unclear. This study aimed to compare and clarify the epidemiological and clinical features of HCoVs and respiratory syncytial virus (RSV), which commonly causes severe respiratory infections in children. METHODS: Nasopharyngeal swabs were collected from all pediatric inpatients with respiratory symptoms at two secondary medical institutions in Fukushima, Japan. Eighteen respiratory viruses, including RSV and four HCoVs, were detected via reverse transcription-polymerase chain reaction. RESULTS: Of the 1757 specimens tested, viruses were detected in 1272 specimens (72.4%), with 789 single (44.9%) and 483 multiple virus detections (27.5%). RSV was detected in 639 patients (36.4%) with no difference in clinical characteristics between RSV-A and RSV-B. HCoV was detected in 84 patients (4.7%): OC43, NL63, HKU1, and 229E in 25 (1.4%), 26 (1.5%), 23 (1.3%), and 16 patients (0.9%), respectively. Patients with HCoV monoinfection (n = 35) had a significantly shorter period from onset to hospitalization (median [interquartile range] days, 2 [1-4.5] vs. 4 [2-5]), significantly shorter hospitalization stays (4 [3-5] vs. 5 [4-6]), and more cases of upper respiratory infections (37.1% vs. 3.9%) and croup (17.1% vs. 0.3%) but less cases of lower respiratory infection (54.3% vs. 94.8%) than patients with RSV monoinfection (n = 362). CONCLUSION: Seasonal HCoV-infected patients account for approximately 5% of children hospitalized for respiratory tract infections and have fewer lower respiratory infections and shorter hospital stays than RSV-infected patients.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , COVID-19/epidemiology , Child , Child, Hospitalized , Humans , Infant , Pandemics , Respiratory Tract Infections/epidemiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL